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ABSTRACT 
 
 
 
This thesis is concerned with solving or approximately solving a maximum-flow 

network-interdiction problem denoted MXFI:  A network user strives to maximize flow 

of a commodity through a capacitated network, while an interdictor, with limited assets, 

attempts to destroy links in the network to minimize that maximum flow. 

MXFI can be converted to a binary integer program and solved but this approach 

can be computationally expensive.  Earlier work by Derbes (1997) on a Lagrangian-

relaxation technique has shown promise for solving the problem more quickly (Derbes, 

1997).  We extend his technique and implement algorithms in C to solve MXFI for all 

integer values of total interdiction resource available, R, in some specified range; 

interdictable arcs require one unit of resource to destroy.  The basic procedure solves 

MXFI exactly for most values of R, but “problematic values” of R do arise.  For one set 

of test problems, a heuristic handles these values successfully, with optimality gaps that 

are typically less than three percent. 

 We test our algorithms and implementations using five test networks which range 

in size from 27 nodes and 86 arcs to 402 nodes and 1826 arcs.  Using a 700 MHz 

Pentium III personal computer, we solve the largest problem in 16 seconds. 
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EXECUTIVE SUMMARY 
 
 
 
Consider a theater of war in which one warring party uses a transportation 

network to provide supplies, troops, and ammunition to his forces and suppose that the 

opposing party has a limited ability to attack and disrupt his opponent’s use of that 

network.  This thesis is concerned with solving or approximately solving a related 

maximum-flow network-interdiction problem denoted MXFI:  An interdictor, with 

limited assets, attempts to destroy links in a network in order to minimize the maximum 

flow through that network which an adversary might obtain.  The problem is described by 

Wood (1993) and was extended for use at the U.S. Strategic Command by Whiteman 

(1999).  

This thesis is motivated by the possibility of weakening a military force by 

disrupting its access to supplies, but other uses may exist.  For example, we may wish to 

disrupt the escape routes of a fugitive or reduce the flow of illegal drugs and precursor 

chemicals moving through a network of rivers, road and air corridors.  Indeed, MXFI was 

originally motivated by the United States’ drug interdiction efforts in South America.  

MXFI can be converted to a binary integer program and solved but this approach 

can be computationally expensive.  Furthermore, the approach does not lend itself to 

efficient exploration of tradeoffs between interdiction resource expenditure and 

maximum post-interdiction flow.  However, earlier work by Derbes (1997) on a 

Lagrangian-relaxation technique has shown promise for solving MXFI more quickly and 

facilitating the exploration of such tradeoffs.  We extend Derbes’ techniques in this 

thesis. 

In the Lagrangian-relaxation technique, for fixed resource level, we relax the 

interdiction resource constraint in the basic integer program using a parameter λ.  This 

relaxation allows us to approximately solve the problem by moving the resource 

constraint into the objective function.  The resulting problem is almost as easy to solve as 

if resource constraints were ignored:  It is merely a maximum-flow problem.  We extend 

this technique and implement algorithms in C to solve MXFI for all integer values of 
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total interdiction resource available, R, in some specified range.  Interdictable arcs are 

assumed to require one unit of resource to destroy.  The basic procedure solves MXFI 

exactly for most values of R, but “problematic values” of R do arise.  A heuristic usually 

handles these values successfully:  For one set of test problems, the heuristic yields 

relative optimality gaps that are typically less than three percent.  Relative gaps are 

typically small, a few percent, but can be large if the post-interdiction maximum flow is 

small. 

 We test our algorithm, coded in C, using five test networks ranging in size from 

27 nodes and 86 arcs to 402 nodes and 1826 arcs.  All tests are performed on a 700 MHz 

Pentium III personal computer with The Microsoft Windows Millennium operating 

system and Microsoft Visual C++ compiler.  The largest network is solved in 16 seconds 

for 58 potential values of R.  
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I. INTRODUCTION  

In the maximum-flow network-interdiction problem (MXFI), an “interdictor” 

attempts to destroy parts of a capacitated network using limited interdiction resources, so 

as to minimize the maximum flow that a “network user” can move through the network.  

This thesis investigates an efficient Lagrangian-relaxation technique that solves MXFI, at 

least approximately, for all values of a single interdiction resource in a specified range.  

 

A. OVERVIEW 

This thesis is concerned with solving or approximately solving a maximum-flow 

network-interdiction problem described by Steinrauf  (1991) and Wood (1993), and 

extended for use at the U.S. Strategic Command by Whiteman (1999).  The problem is 

defined on a directed network G = (N,A) which has arc capacities uk for all arcs k ∈ A, a 

source node s, a sink node t, and an artificial “return arc” a = (t,s) included in A such that 

ua = ∞.  We are interested in solving he problem for various amounts of interdiction 

resource R, so we parameterize the problem by R: 

MXFI(R)             ( ) min max aX
z R y

∈
=

x y
    

                             s.t. 0
)()(

=− ∑∑
∈∈ iRSk

k
iFSk

k yy                 ∀i ∈ N 
                                 )1(0 kkk xuy −≤≤       ∀k ∈ A           

                 

{ }where 0,1 , 0A
k k a

k A
X r x R x

∈

 = ∈ ≤ ≡ 
 

∑x , rk is the amount of resource required to 

interdict arc k, R is the total amount of resource available, FS(i) (forward star of node i) is 

the set of arcs directed out of  node i, and RS(i) (reverse star of node i) is the set of arcs 

directed into node i.  For fixed x, the inner maximization problem is a standard 

maximum-flow problem with arc capacities (1 )k ku x− .  But, the interdictor controls the x 

variables and attempts to minimize that maximum flow: When xk = 1, arc k is interdicted 

and its capacity goes to 0; otherwise, the arc is left untouched and takes on its normal 
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capacity uk.  We consider only the case in which all rk are integer.  Thus, R may be 

assumed to be integer. 

MXFI(R) can be converted to a binary integer program and solved using standard 

techniques, but this approach can be computationally expensive (Wood, 1993).  Earlier 

work by Derbes (1997) on a Lagrangian-relaxation technique has shown promise for 

efficient solutions, but he only solves MXFI(R) for fixed R and we believe planners will 

often want to explore the effects of varying R.  That is, they will want to understand how 

increasing interdiction effort results in improved interdiction results over a range of 

interdiction resource values.  Therefore, we adapt Derbes’ method to solve MXFI(R) over 

a wide range of values R.  In particular, we solve over the widest range of “sensible” 

values, which are from R = 0 to the smallest value of R that results in a maximum flow of 

zero through the network.  Our method typically solves MXFI(R) exactly for most values 

of R, but not for a few “problematic” ones.  We provide an effective heuristic to deal with 

these problematic instances. 

 

B. LITERATURE SEARCH 

The study of network interdiction began during the Vietnam War with efforts to 

destroy enemy supply lines (Wollmer 1964, 1970).  Later, the desire to interdict illicit 

drugs generated additional interest; see Steinrauf (1991) and (Phillips 1992). 

MXFI can be viewed as having evolved over time through the studies of Wollmer 

(1964, 1970), Durbin (1966), McMasters and Mustin (1970), Helmbold (1971), Ghare, 

Montgomery, and Turner (1971), Lubore, Ratliff and Sicilia (1971, 1975), Steinrauf 

(1991), Phillips (1992) and Wood (1993).  Most of these papers are based on the 

pioneering work on maximum flows by Ford and Fulkerson (1956). 

Steinrauf (1991) solves the network-interdiction problem with mathematical- 

programming techniques. Two mathematical programs are developed which determine 

strategies to interdict a network using limited resources.  The first model identifies a set 

of arcs whose interdiction minimizes the maximum flow through the network while not 

exceeding available interdiction resources.  This is essentially MXFI. The second model 

identifies a set of arcs whose interdiction isolates a large set of nodes around a specified 

node, which might represent the most likely location of a drug laboratory.  The models 
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are applied to a sample network that is similar to a river and road network in Bolivia 

where counter-narcotic interdiction operations were being conducted at the time. 

 Philips (1992) presents several pseudo-polynomial time algorithms using 

dynamic programming for interdiction of undirected planar networks. 

Wood (1993) develops integer-programming models for MXFI and variants and 

shows MXFI to be NP-complete. 

Reed (1994) derives an integer-programming model to maximize the longest path 

in a PERT network through interdiction.  The purpose is to slow the advance of nuclear-

weapons technology in adversarial countries. 

Wollmer (1970) and Washburn and Wood (1994) study game-theoretic network 

interdiction models, which are inappropriate for the problem we consider. 

Cormican (1995) solves MXFI using Benders decomposition and improves 

computational speed with a “flow-dispersion heuristic.”  Cormican begins the 

investigation of probabilistic versions of MXFI where interdiction successes or arc 

capacities are uncertain.  Cormican, Morton and Wood (1996) develop this topic further 

and solve such problems with a sequential-approximation algorithm. 

Derbes (1997) follows a mathematical-programming approach for solving MXFI.  

He shows that a technique based on Lagrangian relaxation can be effective in 

approximately solving the problem.  It turns out that the network interdictor’s problem of 

minimizing the maximum flow through the network is difficult to solve because of the 

interdiction budget constraint.  Therefore, he relaxes this constraint using Lagrangian 

relaxation, which allows the interdictor to violate the constraint while paying a penalty.  

For a fixed value of a penalty parameter, the relaxation is an easy-to-solve maximum-

flow problem with a solution that provides a lower bound on the optimal solution to the 

original problem.  A corresponding interdiction solution is also derived although this may 

or may not be feasible.  He maximizes the lower bound using binary search on the value 

of the penalty parameter, solving a maximum flow problem at each step and guaranteeing 

that at least one feasible solution will be found.  The best feasible solution obtained in 

this process is taken as an approximate, possibly optimal, solution to the problem, and the 

corresponding upper bound is compared to the maximized lower bound to judge solution 
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quality.  Derbes implements the procedure in C and demonstrates its effectiveness. (He 

also studies, with less success, a dynamic version of MXFI where flow requires time to 

pass through a network’s arcs.)  

Golden (1978), Israeli (1999), Israeli and Wood (1999) and Wevley (1999) study 

another category of network interdiction problem.  In this problem, an interdictor 

attempts to interdict (destroy or lengthen) arcs, using limited interdiction assets, to 

maximize the length of a shortest s-t path.  While these models are similar in spirit to 

MXFI, that research is not relevant to this thesis. 

Whiteman (1999) presents a comprehensive strategy to plan the interdiction of 

complex infrastructure networks that can be modeled as capacitated flow networks. The 

strategy is designed to achieve a high level of interdiction in a single set of strikes, 

reducing the necessity of costly follow-up strikes.  He adapts the integer program of 

Wood (1993) to select target sets of minimum size and uses ad hoc Monte Carlo 

techniques to handle uncertain interdiction effects. 

Akgun (2000) studies the “K-group network interdiction problem” in which a 

network user attempts to maximize flow among three or more groups of nodes, while an 

interdictor interdicts network arcs, using limited interdiction resources, to minimize that 

flow.  This model is more general than MXFI but an extension of our techniques might 

be of value in solving that problem. 

 

C. OUTLINE OF THESIS 

The first chapter of the thesis has introduced the max-flow network-interdiction 

model (MXFI), and given an overview of earlier research in this area.  Chapter II 

provides definitions, notation and detailed background on MXFI, and describes some 

other basic models.  In Chapter III, we develop our Lagrangian-relaxation approach, 

which attempts to solve MXFI for every value of “reasonable” R, and describe a heuristic 

that is added to deal with problematic values of R.  Chapter IV provides computational 

results.  Conclusions and recommendations for future work are covered in Chapter V. 
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II. PRELIMINARIES 

  This chapter provides essential definitions and notation for MXFI(R), and 

outlines the derivation of Derbes’ Lagrangian-relaxation technique for solving MXFI 

(Derbes 1997).  The notation, conventions and models follow Wood (1993), Cormican 

(1995) and Derbes (1997). 

 

A.        DEFINITIONS AND NOTATION  

MXFI(R) is defined on a directed network G = (N,A) where N is a set of n nodes 

and A is a set of m directed arcs. An arc k = (i,j) originates from tail node i and terminates 

at head node j.  The forward star of node i, denoted FS(i), is the set of arcs directed out of 

node i and the reverse star of node i, denoted RS(i), is the set of arcs directed into node i. 

The network G = (N,A) has arc capacities uk > 0, a source node s, a sink node t, 

and an artificial return arc a = (t,s) included in A such that ua = ∞.  An interdictor has a 

total of R units of resource available for interdiction. 

A single type of interdiction is assumed in this thesis and only arcs are interdicted.  

Any “interdictable arc” k requires rk  > 0 units of resource to interdict; rk is assumed to be 

integral and thus R may also be assumed to be integral.  “Uninterdictable arcs,” which 

always include k = a, have rk = ∞.  These arcs may not be interdicted at any cost for 

political, tactical, theoretical or other reasons.  Standard network transformations enable 

the modeling of undirected networks and node interdiction if desired (e.g., Ahuja et al. 

1997, pp. 38, 46).  Other generalizations such as “partial interdiction’’ (Wood 1993) are 

possible, too. 

A cut (Ns, Nt), also denoted C, is a partition of the node set N into two subsets, Ns 

and Nt, such that s ∈ Ns and t ∈ Nt.  Each cut defines a set of arcs that have one endpoint 

in Ns and other endpoint in Nt.  With respect to the cut, an arc k=(i,j) is a forward arc if i 

∈ Ns and j ∈ Nt ; otherwise it is backward arc.  The set of forward arcs is denoted by AC, 

and we often refer to this set as “the cut’’ for the sake of simplicity.  The capacity of the 

cut is ∑
∈ CAk

ku .  A minimum cut is a cut whose capacity is minimum among all possible 
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cuts in the network.  The maximum-flow minimum-cut theorem (Ford and Fulkerson 

1956) states that the maximum flow s-t flow in a network G equals the capacity of a 

minimum cut.  

 
B. MAXIMUM-FLOW NETWORK INTERDICTION MODELS 

 

1.   Maximum-Flow Network-Interdiction Model Reformulation 

Cormican (1995) reformulates MXFI(R) for easy conversion to a MIP: 

MXFI-RF(R): 

Indices: 

i, j ∈ N       nodes of directed network G = (N,A) including two special nodes, 

                   the source s and the sink t 

k ∈ A         directed arcs in the network G = (N,A), k = (i,j)    

Data:   

uk               nominal capacity of arc k 

rk               amount of resource required to interdict arc k 

R               total amount of resource available to the network interdictor 

Decision Variables: 

Network user: 

yk                     amount of flow on arc k 

Network interdictor: 

xk                     1 if arc k is interdicted; 0 otherwise 

Formulation: 

( ) min max a k kX k A
z R y x y

∈
∈

= −∑x y
 

 
 
s.t. 
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        0
)()(

=− ∑∑
∈∈ iRSk

k
iFSk

k yy                ∀i ∈ N 

 
                   kk uy ≤≤0              ∀k ∈ A           
                
     

{ }where 0,1 , 0A
k k a

k A
X r x R x

∈

 = ∈ ≤ ≡ 
 

∑x . 

2.  Integer Program 

Taking the dual of the inner maximization yields the following mixed-integer 

program first derived through other means by Wood (1993). 

MXFI-IP(R): 

Indices and Data: As in MXFI-RF(R) 

Decision Variables: 

xk                      1 if arc k is interdicted; 0 otherwise 

αi                       αi = 1    if i ∈ Nt, else αi = 0      

βk                       βk  = 1    if  k is a forward arc of cut and not interdicted, else βk = 0    

Formulation:  

, ,
( ) min k k

k A
z R u β

∈

= ∑α β x
 

s.t. 
          0≥++− kkji x βαα                     ∀k = (i,j) ∈ A – a  
        

          1≥++− aast x βαα           
  
                                   αi ∈ {0,1}              ∀i ∈ N     
 
                                   αs  ≡ 0, αt  ≡ 1     
 

                                                    βk  ∈ {0,1}               ∀k ∈ A         
 
                                   βa  ≡ 0  
 
                                   xk ∈ {0,1}                ∀k ∈ A         
                                           
                                   xa  ≡ 0                             
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                           Rxr k

Ak
k ≤∑

∈

                                                           (1) 

           

The variables αi identify a cut (Ns,Nt) with i ∈ Ns if αi = 0 and i ∈ Nt  if αi = 1.  The 

variables xk and βk represent interdiction decisions with respect to (Ns,Nt) and have the 

following interpretation:  For forward arcs k = (i,j) in the cut, 1−=− ji αα  so 

1=+ kkx β  is required.  So, either 1=kx , indicating that this arc is interdicted, or 

1=kβ , indicating that this arc is not interdicted and forms part of the minimum cut after 

interdiction. 0== kkx β  indicates that arc k is neither interdicted nor part of the 

minimum cut after interdiction.    

3.  Lagrangian Relaxation for the Integer Problem 

The basic integer program formulation MXFI-IP(R) is hard to solve but becomes 

easy if we ignore the interdiction budget constraint (1).  While this constraint cannot be 

ignored, it can be relaxed.  Following Derbes (1997), we use Lagrangian relaxation and 

moved the interdiction resource constraint into the objective using a parameter λ.  The 

resulting problem is almost as easy to solve as if constraint (1) were ignored.  The 

Lagrangian relaxation of MXFI-IP(R) is:  

LR(λ,R):     

RxruRz kkk
Ak

k λλβλ −+= ∑
∈

)(min),(
,, xβα

                                          

 s.t.    0≥++− kkji x βαα                            ∀k = (i,j) ∈ A – a           
        

          1≥++− aast x βαα           
             

                                   αi ∈ {0,1}                     ∀i ∈ N         
 
                                   αs  ≡ 0, αt  ≡ 1 
 
                                                    βk  ∈ {0,1}                      ∀k ∈ A         
 
                                   βa  ≡ 0  
 
                                   xk ∈ {0,1}                      ∀k ∈ A         
                                           
                                   xa  ≡ 0                             
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It can be shown that the LP relaxation of this model has integer extreme points so 

we may take its dual and simplify to obtain: 

LRD(λ,R): 

      RyRz a λλ −=
y

max),(  

                  s.t. 0
)()(

=− ∑∑
∈∈ iRSk

k
iFSk

k yy                ∀i ∈ N 

                 },min{0 kkk ruy λ≤≤             ∀k ∈ A           
                   

LRD(λ,R)  is essentially a maximum flow model defined on G but using 

capacities modified by the dual cost of interdicting the arc.  

 Proposition 1: Any solution to LRD(λ,R) finds a minimum-cut (Ns, Nt)  that 

corresponds to a feasible or infeasible solution (x,α,β) to the original problem MXFI-

IP(R) as follows: 

1.   1=iα  ∀i ∈ Nt, αi = 0    ∀i ∈ Ns        

2.   1=kβ  if  i ∈ Ns, j ∈ Nt  and kk uy = , i.e., if k is a forward arc of the minimum 

cut  and kk ru λ< , then k is not interdicted.  

3.   1=kx  if  i ∈ Ns, j ∈ Nt  and kk ry λ= , i.e., if k is a forward arc of the minimum 

cut  and kk ru λ>  , then k is  interdicted.  

4.   0== kkx β  ∀k that are not forward arcs in the cut. █ 

Note that λ can always be perturbed so that kk ru λ=  does not occur.  The 

solution x is feasible if the interdiction budget constraint (1) holds. 
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III. NETWORK INTERDICTION BY LAGRANGIAN 
RELAXATION 

This chapter presents our approach to solving MXFI(R) through LRD(λ,R), for a 

range of resource values R. 

 

A. OVERVIEW 

We use LRD(λ,R) as our main model to develop the algorithms to solve 

MXFI(R).  The function z(λ,R), which LRD(λ,R) computes, is a piecewise-linear concave 

function in λ and Derbes (1997) shows, for a fixed value of R, how to maximize this 

function. 

Because of the relaxation, z(λ,R) ≤ z(R), but for some λ values we may find a 

Lagrangian multiplier such that Rxr k
Ak

k =∑
∈

, where the xk are computed via Proposition 

1.  In this case, 

, , , ,
( , ) min ( ) min ( ).k k k k k k

k A k A k A
z R u r x R u z Rλ β λ β

∈ ∈ ∈

= + − = =∑ ∑ ∑α β x α β x
               (2) 

That is, we have solved MXFI(R) exactly.  Derbes (1997) uses binary search on λ values 

to maximize ),( Rz λ  for fixed R and often finds λ such that ),( Rz λ =  z(R), but not 

always. 

In this chapter, we adapt Derbes’ method to attempt to solve MXFI(R) for all 

integer values of R over the largest meaningful range, which is from the smallest value 

that allows no positive post-interdiction flow down to R = 0.  (In fact, we search this 

range from large to small.)  For the sake of simplicity, we assume from hereon that rk = 1 

for all k; even this special case of MXFI is NP-complete (Wood 1993). 

 

B. SOLVING THE RELAXED MODEL   

Proposition 2:  Given a fixed λ, with ku≠λ  for any k, we can solve MXFI(R), 

for some as yet unspecified R, through LRD(λ,R), as follows:  
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1. Find a minimum-capacity cut AC in G with arc capacities },min{ kk ru λ ∀k ∈ A 

where rk = 1 for all interdictable arcs k, and rk = ∞, otherwise.  This is easily 

accomplished with an efficient maximum-flow algorithm, which computes f(λ) (e.g., 

Ahuja et al. 1993, Chap.7). 

2. Arcs in the minimum-capacity cut AC are examined to find the corresponding 

“interdiction set”, AI ⊆ AC, where Ik A∈  if and only if k is a forward arc of the minimum 

cut such that kk ru λ> . 

3. Let R = | AI | and define xk(R) = 1 for all IAk ∈  and xk(R) = 0, otherwise.  x(R) 

solves MXFI(R);  see Proposition 1 and Equation (2) above.  We have, in effect, 

optimized the Lagrangian function z(λ,r) through LRD(λ,r) for R = r. █ 

 

So, we now know that for any fixed value of λ we can obtain a solution to MXFI 

for some value of R.  But we are interested in solving MXFI for all (reasonable) integer 

values of R.  Given how λ affects the solution x(R) through Proposition 1 and Proposition 

2, it is clear that the only values of λ we need be concerned with are in the range [0,umax].  

Furthermore, from Proposition 2, we can see that the solution x(R) can only change when 

the definition of AI changes; it can be shown that these are the corner points at which the 

slopes of z(λ,R) and f(λ) change.  Intuitively, this is likely to occur at λ = uk for some k, 

although examples can be given to show that not all corner points occur at such λ.   

Nonetheless, we can solve many problems with acceptable accuracy by only evaluating 

f(λ) and z(λ,R) at such points.  We modify Proposition 2 slightly so that it corresponds to 

evaluating f(λ) only at values λ = uk: 

Proposition 3: Given a fixed λ = uk for some k, we can solve MXFI(R), for some 

as yet unspecified R, through LRD(λ,R), as follows:  

1. Find a minimum-capacity AC cut in G with arc capacities },min{ kk ru λ ∀k ∈ A 

where rk = 1 for all interdictable arcs k, and rk = ∞, otherwise. 
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2. Define the interdiction set, AI  ⊆ AC, where Ik A∈  if and only if k is a member 

of  AC such that k ku rλ≥ . 

3. Let R = | AI | and define xk(R) = 1 for all k ∈ AI and xk(R) = 0, otherwise.  x(R) 

solves MXFI(R) and the slope of z(λ,R) is zero for all ( , )k ku uλ ε∈ −  for some ε > 0.  

(We might actually need to perturb arc capacities to ensure that such an ε exists.) 

4. If λ = ku ′  for some k′ ∈ AI, then let AI = AI − {k′}, R = R − 1, and define xk(R) = 1 

for all k ∈ AI and xk(R) = 0, otherwise.  x(R) solves MXFI(R) and the slope of z(λ,R) is 

zero for  all ( , )k ku uλ ε∈ +  for some ε > 0 (although arc capacities might need to be 

perturbed to ensure there exists such an ε). █ 

 

This suggest the following outline of an algorithm for evaluating x(R) for 

different values of R:  

1. Order the uk, u1< u2<… < u|A|.  These are the potential values for λ (albeit not all-

inclusive). 

2. Initialize R  = ∞. 

3. For k = 1, … , |A| 

a. Let λ = uk and solve the corresponding max-flow problem to evaluate f(λ), 

AI, R, and x(R) as in steps 1-3 of Proposition 3. 

b. If  R′ ≠ R, print R and x(R) and let RR =′ . 

c. If  λ = ku ′  for some k′ ∈ AI, then 

i. Let AI = AI − {k′}, R = R − 1, and define x(R) accordingly, all as in 

step 4 of Proposition 3. 

ii. Print R and x(R) and let RR =′ .  

d. If  R = 0, halt.  
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The algorithm above first finds a solution x(r1) to MXFI(r1) where r1 is the 

number of arcs in a minimum cardinality cut consisting of only interdictable arcs:  If the 

interdictor had r1 units of interdiction resource, he could reduce the post-interdiction 

maximum flow to zero.  Then, for the same λ we may find a solution to MXFI(r1−1) as in 

step 4 of Proposition 3.  If not, as λ increases to u2 or some larger value, a solution x(r2) 

to MXFI(r2) is found for some r2 < r1.  Unfortunately, it may be that r2 < r1 − 1 and the 

algorithm will have failed to solve MXFI(r1−1).  Similarly, the algorithm may solve 

MXFI(rh) but fail to solve MXFI(rh−1) and maybe MXFI(rh−2) and so on.  This issue will 

be investigated further, but first we show how multiple arcs with the same capacity are 

handled. 

 
C.        SCALING AND PERTURBING ARC CAPACITIES 

We have earlier assumed that all uk are unique.  If they are not unique, we may 

encounter a network without easily identifiable interdiction sets as Derbes discovered in 

his work.  Derbes’ basic method fails to find an optimal solution to MXFI(R) when it 

cannot identify a set of arcs to interdict that consumes the entire interdiction resource 

budget exactly.  One such failure can occur when optimal cuts found in LRD(λ,R) are 

composed of a number of arcs with equal capacity.  For example, the network in Figure 3 

consists of seven interdictable arcs in parallel between the source and the sink with rk = 1 

and uk = u ∀k.  Suppose R = 4.  There is only one cut, but for λ > 0, the solution to 

MXFI(R) from Proposition 1 interdicts all arcs, which is infeasible, or no arcs, rather than 

the R = 4 arcs that are optimal.  Thus, Lagrangian relaxation will never find an optimal 

solution to this problem. 

In the context of our algorithm which attempts to solve MXFI(R) for all integer 

values of R in a certain range, this problem leads to unnecessary gaps in the values of R 

for which a solution can be obtained.  In this example, our algorithm would solve 

MXFI(R) for R = 0 and R = 7, but not for any value in between.  
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Figure 1.   A network without an easily identifiable interdiction set when rk = 1 for all arcs 
k.  All labeled arcs have the same capacity u and are interdictable; all unlabeled 
arcs have infinite capacity and are uninterdictable. 

To cope with this problem, Derbes (1997) scales up all capacities by a factor of 

105 and then adds a uniform random integer from the range [1,100].  In practice this 

works well, but it is still possible to have two arcs with identical perturbed capacities, 

which we would like to avoid. 

We deal with the problem of multiple arcs with identical capacities by simply 

scaling up arc capacities and adding small, unique integer amounts to those arcs with 

identical capacities.  This enables the algorithm is able to differentiate between arcs that 

would otherwise appear identical.  The algorithm we use to accomplish this is 

1. Sort the arcs so that u1 ≤  u2 ≤ ⋅ ⋅ ⋅ ≤  u|A| ; 

2. uk ← 105 uk for all k ∈A ; 

3.  For k = 2 to | A |  { If  ( uk ≤ uk-1 ) let uk ←  uk-1 + 1; }  

We store integer arc capacities as “long int” integers in C, which have 32 bits of 

accuracy and can represent integers somewhat larger than 2.1×109.  Therefore, our scaled 

and perturbed capacities will be representable as long as 105uk + | A | < 2.1×109.  Making 
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the reasonable assumption that | A | < 108, we can be assured that capacities as large as uk 

= (2.1×109 −108)/105 = 2×104 are not too large:  Our largest capacities are 49.  If 

capacities larger than 2×104 are desired, the long int integers can be replaced by 64-bit 

“long long int” integers.  (64-bit arithmetic will be carried out correctly, directly in 

hardware or indirectly through software, depending on the computer used.)  

This scaled-perturbation technique will work fine as long the original arc 

capacities are not too large—this has just been established for our data—and as long as 

there are not “too many” arcs with identical capacities.  In particular, the technique will 

not cause an error here unless for two cuts 
1CA  and 

2CA , 
1 2C C

k k
k A k A

u u
∈ ∈

<∑ ∑ , but 

1 2C C

k k
k A k A

u u
∈ ∈

′ ′>∑ ∑ , i.e., the original capacity of cut 
1CA is less than the capacity of cut 

2CA , 

but using the scaled and perturbed capacities ku′  reverses the relationship.  This cannot 

happen if the total perturbation added to any minimal cut AC does not exceed the scale 

factor of 105.  An upper bound on the total perturbation added to AC is m′| AC | where m′ is 

the maximum number of arcs with identical capacities.  Conservative assumptions for our 

data are that| AC | < 60 and m′ < 600, so this requirement is satisfied. 

After scaling and perturbing arc capacities, the Lagrangian algorithm can be 

modified to identify, for a given R, certain multiple optimal solutions.  In particular, the 

algorithm might encounter and identify interdiction sets, which have identical original 

capacities but different perturbed capacities.  This would be accomplished in the outlined 

algorithm by replacing the “if statement” in 3.b with a statement that compares the 

elements of the previous set AI with the current one, and prints out the solution if the two 

sets are different.  For the sake of simplicity, we ignore this possibility. 

 

D.        A DETAILED ALGORITHM 

In this section, we present a detailed version of the algorithm outlined in section 

3.B.  This algorithm, Algorithm 1, attempts to solve MXFI(R) for all integers 

R ∈ [0, | Amin |], where Amin is a minimum-cardinality cut consisting of only interdictable 
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arcs.  But as stated, it only solves for “normal” values of R, i.e., those values of R that are 

not problematic. 

Algorithm 1 requires the solution of a sequence of maximum-flow problems, and 

because capacities are non-decreasing in this sequence, the maximum flow y′ in iteration 

h is feasible for iteration h+1.  Thus, it makes sense efficiency-wise to use a flow-

augmenting-path max-flow algorithm that maximizes flow starting with the previous 

iteration’s maximum flow; and our implementation of Algorithm 1 does incorporate this 

feature.  However, for the sake of simplicity, we do not show this in our pseudo-code.  

This maximum-flow algorithm is represented by: 

 

Procedure FindMaxFlow (G, s, t, u) 
         
Input:  Network G = (N,A), source node s, sink node t 

   u  integer arc capacities 0>ku  Ak ∈∀  

Output: CA   a minimum-capacity cut AAC ⊂  
    y     vector of maximum arc flows, Akyk ∈∀≥ 0  
    f    maximum-flow value 

{ 

This procedure finds a max flow y, max-flow value f, and identifies a minimum-
capacity cut CA  using a variant of the Edmonds and Karp (1972) max-flow 
algorithm as implemented by Derbes (1997). 

return ( CA , y, f ) 

}  

Algorithm 1 can now be stated.  Note that solutions are only given in terms of the 

value for R, the optimal interdiction set AI given R, and the optimal objective value to 

MXFI(R) which is z(R).  

Algorithm 1: Lagrangian-Relaxation Algorithm for MXFI 
 

Input:        Network G = (N,A), source node s, sink node t 
       u     integer arc capacities 0>ku  Ak ∈∀ , all ku assumed unique 

       1=kr for all interdictable arcs Ak ∈∀ ; ∞=kr otherwise 

Output:     AI  optimal interdiction set for each normal value of R ∈ [0,| Amin |]; 
             z(R) optimum objective value to MXFI(R) for each normal value of R; 
  

Step 0:  /* define and order the candidate set of λ values */ 



18 

             kk u←λ  Ak ∈∀ ; 
             Order the values λk such that λ1 < λ2 < ⋅ ⋅ ⋅  < λ|A| ; 
Step 1: Initialize: | | 1, | | 1, 0, 0, 0R A R A f f λ′ ′ ′← + ← + ← ← ← , 1l ← , y′← 0;              
Step 2:  
             While ( l≤ | A | and R ≠ 0){ 
  λ  ← λl; 

  { }min ,k k ku u rλ′ ←  for all Ak ∈ ;  /* adjust arc capacities */ 
  ( , , )CA f ←y  FindMaxFlow (G, s, t, u′); 
   AI ← {k ∈ AC | yk = λ }; 
  R ← | AI |; 

  z ← f −  λ R; 
  /* Uncomment the next block to handle problematic R-values */ 
   /* 

  if  ( R − R′ > 1 ){                   
   Call SolveForProblematic(R, λ, f, R′, λ′, f ′, IA′ ); 
  } 
  * / 
  print (“ The optimal solution to MXFI(R) for R = ”, R, “follows: ”); 
  print  (The optimal interdiction set and objective value are”, AI, z) ; 
  if  ( ku λ′ =  for some k′ ∈ AI ){ 
   AI ← AI − {k′}; 
   R ← R − 1; 
   z ← z + ku ′  ; 
    print (“ The optimal solution to MXFI(R) for R = ”, R, “follows: ”); 
   print  (The optimal interdiction set and objective value are”, AI, z) ; 
  } 
  RR ←′ , λ λ′← , ayy ←′ , I IA A′ ← , f ′←f, z′ ← z; 
  1+← ll ; 
 } 
 

If the change in R-values from one iteration to the next, is never larger than one, 

Algorithm 1 must solve MXFI(R) for all values of R in the range [0, | Amin | ] as described 

in section 3.B.  When the change exceeds one, there will be one or more missing 

solutions and we will modify the algorithm by adding the procedure 

SolveForProblematic(), to deal with this.  This heuristic is described in the next section. 

 

E.        PROBLEMATIC VALUES OF R 

We don’t know when problematic R-values will arise, but we know empirically 

that they are likely to occur and must therefore devise a method to cope with them.  We 



19 

devise a technique here to evaluate bounds and feasible interdiction sets for the 

problematic values of R by calling the procedure SolveForProblematic() which is 

commented out in Algorithm 1.  We call the full version of the algorithm Algorithm 2. 

When Algorithm 2 finds a solution for R = r and R = r − 2, but not for R = r − 1, it 

calls SolveForProblematic() to devise a solution MXFI(r−1):  It “uninterdicts” the arc 

with the least capacity in the “R=r solution”.  This yields an upper bound UB ≥ z(r−1), of 

course, and we compute a lower bound LB = max{ f(λr − 2) − λr
 
− 2(r−1),  f(λr) − λr(r−1) } 

where  λr − 2 maximizes z(λ,r−2) and λr maximizes z(λ,r) (and led, respectively, to the 

solutions of MXFI(r−2) and MXFI(r)).  Absolute and relative optimality gaps are 

computed for the solution as AbsGap = UB − LB and RelGap = (100%)×AbsGap/LB. 

In practice, Algorithm 2 also creates a heuristic solution for R = r−1 by adding an 

interdiction to the “R=r−2 solution.”  We do not show this in the statement of the 

algorithm for the sake of simplicity.  For the sake of computational efficiency, we have 

not attempted to optimize the lower bound LB, i.e., we have not tried to maximize 

z(λ,r−1).  To do this would require that we explore the region (λr − 2, λr) more fully and 

solve more maximum-flow problems. 

When a sequence of two or more problematic R-values is encountered, we simply 

apply the above procedure repeatedly; this will be shown by the second example below.  

In these examples, the notation AI(r) denotes the interdiction set identified for R = r. 
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Figure 2.   Sample Network, NET5, to Demonstrate Problematic R-values.  Numbers on 

arcs are capacities and letters are labels.  Unlabeled arcs cannot be interdicted, 
i.e., rk = ∞.  All labeled arcs have rk = 1.  

 

To illustrate SolveForProblematic(), consider NET5 shown in Figure 2.  

Algorithm 2 finds a solution for R = 9 and then for R = 7, but not for R = 8.  For 

reference: z(9) = 100;  f(λ7) = 2703, where λ7 = 300 optimizes z(λ,7) = z(7); the R=9 

solution is AI(9) = {a,b,c,d,e,f,g,h,k}; and f(λ9) = 1918 where λ9 = 202. To solve MXFI(8) 

approximately, we carry out the following steps: 

i. AI(8) = AI(9) − kmin= {a,b,c,d,e,f,g,h,k}− {k} = {a,b,c,d,e,f,g,h}, 

ii. UB = z(9) + um = 100 + 300 =  400, 

iii. LB = max{ f(λ7) − λ78, f(λ9) − λ98}  = max{2703−300(8), 1918−202(8)} = 303, 
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iv. AbsGap  = UB − LB = 400 − 303 = 97, and 

v. RelGap = 100×AbsGAP/LB = 32. 

The problem of Figure 2 also provides an example of two consecutive 

problematic R-values.  In particular, Algorithm 2 solves exactly for R = 7 (λ7 = 502) and 

for R = 4 (λ4 = 600), but not for R = 6 and R = 5.  For reference, z(7) = 603; f(λ7) = 4117,  

f(λ4) = 4604, where λ4 = 600 optimizes z(λ,4) = z(4); and AI(7) = {m,n,o,q,r,u,x}.  Then, 

the algorithm will compute: 

1. For R = 6,  

i. AI(6) = {m,n,o,q,r,u,x} − kmin = {m,n,o,q,r,u,x} − {m} = {n,o,q,r,u,x}, 

ii. UB = z(7) + um = 603 + 601 = 1204, 

iii. LB = max{f(λ4) − λ46, f(λ7) − λ76} = {4604 − 600(6), 4117 − 502(6)} = 1105, 

iv. AbsGap  = UB − LB = 1204 − 1105 = 99, and 

v. RelGap = 100×AbsGAP/LB  =8.9. 

2. For R = 5,  

i. AI = {n,o,q,r,u,x} − kmin = {n,o,q,r,u,x} − {u} = {n,o,q,r,x}, 

ii. UB = z(6) + uu = 1204 + 602 = 1806, 

iii. LB = max{f(λ4) − λ45, f(λ7) − λ75}   {4604 − 600(5), 4117 − 502(5)} = 1607, 

iv. AbsGap  = UB − LB = 1806 − 1607= 199, and 

v. RelGap = 100×AbsGAP/LB = 12.4. 

This example also illustrates that our methodology does not necessarily compute 

the best lower bound.  For instance, the lower bound we obtain for R = 5 is 1607, but the 

best lower bound is maxλ z(λ,5) = 1670 which occurs at λ = 535.  Algorithm 2 will never 

discover this because it only evaluates z(λ,R) for λ equal to some arc capacity; and 535 is 

not an arc capacity in this example. 

SolveForProblematic( ) is now specified in detail here: 
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Procedure SolveForProblematic (R, λ, f, R′, λ′, f ′, IA′ ) 
Input: R current R-value correctly solved  
 λ value of parameter that maximized z(λ,R) to solve MXFI(R) 
 f maximum flow f(λ) 
 R′ previous R-value correctly solved for, (R′ > R + 1) 
 λ′ value of parameter that maximized z(λ,R′) to solve MXFI(R′) 

 
Output:   IA′  interdiction sets that are approximate solutions for problematic 
 R-values in the range R′−1, R′−2, … , R+1                 
                  UB upper bound for problematic value of R 

            LB lower bound value for problematic value R 
            AbsGAP absolute optimality gap UB − LB 
            RelGAP  relative optimality gap ((100%)×(UB − LB)/LB 
 
 

Step 0: 
     UB ← z′; 
Step 1:       
                 For ( r = R′ − 1 down to R + 1 ){ 

          kmin ← argmin
I

k
k A

u
′∈

; 

       LB ←max{ f − λr, f ′− λ′r };   
         UB ← UB + 

minku ; 
  AbsGAP ← UB − LB; 

            RelGAP   ← 100×AbsGAP/LB; 
         minI IA A k′ ′← −  ; 

                    print (“ For problematic value R  = ”, r, “the approximate soln. is: ”); 
                    print ( IA′ ,UB, LB, AbsGAP, RelGAP ); 

     } 
 

E.        COMPLEXITY OF THE ALGORITHM 

Finding the minimum-capacity cut after finding the maximum-flow requires 

O(|A|) time at worst. The sort of the values for λk has complexity O(mlogm). If no 

problematic values of R are observed, the work in the algorithm is clearly dominated by 

the need to solve perhaps as many as m maximum-flow problems. In this case, the 

complexity of the overall algorithm is O(mg(m,n)) where the max-flow algorithm has 

complexity O(g(m,n)).  At most m problematic values of R can be encountered and the 

work required to deal with these is at most O(m) each. Thus, the overall complexity of 

dealing with problematic R-values is O(m2). The overall complexity remains O(mg(m,n)) 

since O(g(m,n)) is certainly worse than O(m).  In practice, we may achieve better 
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performance than this because we are solving a sequence of related maximum flow 

problems, and not solving each problem from scratch. 
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IV. COMPUTATIONAL RESULTS 

We describe the networks tested in the first part of this chapter and present 

computational results in the second part. 

 

A.      TEST NETWORK DESIGN 

We have tested our algorithm using five artificial, directed networks; see Table 1.  

The structure of these networks should be similar to the structure of road networks of 

interest.  These networks are based on n1 × n2 grid networks where n1 is the number of 

nodes on the horizontal axis and n2 is the number of nodes on the vertical axis.    

Horizontal arcs are oriented from “west to east” and all nodes directly above or below 

another are connected with a pair of anti-parallel arcs.  Anti-parallel arcs are separately 

interdictable.  We also have arcs oriented in the southeast and northeast directions.  All 

westernmost nodes are connected to a source node with artificial, uninterdictable, 

infinite-capacity arcs and all easternmost nodes are connected to a sink node with 

artificial, uninterdictable, infinite-capacity arcs.  The arc capacities uk are randomly 

drawn from the discrete uniform distribution on [1,49] and 1=kr  is assumed for all 

interdictable arcs k.  

We base our implementation of Algorithm 2 on Derbes (1997), which uses an 

improved version of the Edmonds and Karp (1972) maximum-flow algorithm.  His code 

only attempts to solve MXFI(R) for single values for R; ours attempts to solve for all 

values R ∈ [0, | Amin |] where Amin is a minimum-cardinality cut in the network consisting 

of only interdictable arcs.  
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Network n1 n2 n m f * 

NET27 5 5 27 86 238 

NET51 7 7 51 188 361 

NET101 11 9 101 412 414 

NET122 8 15 122 499 765 

NET402 20 20 402 1826 1080 

 
Table 1.   Statistics for Test Networks.  n is the total number of nodes and m the total 

number of nodes.  The networks are based on n1 × n2 grids of nodes.  The 
number of interdictable arcs is  m − 2n.  f* is the uninterdicted maximum flow, 
where arc capacities are uniformly distributed random integers in the range 
[1,49].   

 
B. RESULTS 

Test results are summarized in Table 2, which explicitly shows only the results for 

problematic R-values since MXFI(R) is solved exactly for other, normal values.  We are 

primarily interested the percentage of problematic R-values and the accuracy of results 

for such values. The maximum flow value without interdiction is indicated by f* in the 

tables.  The maximized value of the Lagrangian function is z(λ,R) whilez(λ,R) is the 

upper bound value, which equals z(λ,R) when R is not problematic but is obtained from 

the heuristic when it is. 

Table 2 shows that no problematic R-values occur for the first two problems and 

that, in general, problematic values occur less than 25% of the time.  Furthermore, 

absolute optimality gaps are always small, being at most 3% of the uninterdicted 

maximum flow.  NET402 exhibits 10 out of 58 R-values as problematic all of which have 

relative optimality gaps of less than 2.7%.  Large relative optimality gaps, 33.3% and 

20.0%, occur in two instances for NET122, but these also depend on the small value of 
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the lower bound.  The rest of the problematic R-values for this network have relative gaps 

of less than 1.1%, which seem very reasonable. 

In Tables 3 and 4, we explore changes in optimality gaps for one of the test 

networks, NET122, as a function of the coarseness of the arc-capacity distribution.  When 

the capacity distribution is coarse, i.e., there are few arc capacities, the curves for z(λ,R) 

will not be evaluated at many points and we can expect that lower bounds will not be 

very accurate.  Furthermore, fewer potential solutions will be seen and thus we expect 

upper bounds to be worse.  We note that the largest problem, NET402, requires 384 

seconds to solve if each maximum-flow problem is solved from scratch, so solving the 

maximum-flow problem in iteration h+1 starting with the flow from iteration h, as we do, 

can yield a substantial improvement in run time. 

In Table 3, NET122 is evaluated with capacities randomly drawn from {16,32}, 

{8,16,24,32}, and {4,8,12,16,20,24,28,32} (denoted 16[1,2], 8[1,4], 4[1,8], respectively); 

in Table 4 it is evaluated with capacities drawn from {2,4,6…,32}, and {1,2,…,32} 

(denoted 2[1,16], [1,32], respectively).  As suspected, these tables indicate that more 

coarsely distributed arc capacities lead to poorer results:  The coarsest distribution has the 

largest absolute and relative errors and the least coarse the smallest.  It also appears from 

the results that when there is a non-zero optimality gap, a lower bound on this gap is the 

smallest non-zero difference between arc capacities.  In particular, the smallest non-zero 

gap for 16[1,2] is 16, for 8[1,4] is 8, and so on.  Also, we see that gaps appear to be 

monotonically non-decreasing in a contiguous sequence of problematic R-values.  For 

instance, consider the sequence of R-values from 19 down to 10 in 16[1,2] and similar 

sequences in the other problems. 
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Network f* R Run Time 

(cpu sec.) 
Problematic 
R -Values z(λ,R) z(λ,R) Abs. 

Gap 
Rel. 
Gap 

NET27 238 [1,13] 0.1 none NA NA NA NA 
NET51 361 [1,19] 0.5 none NA NA NA NA 
NET101 414 [1,25] 1.0 13 75 73 2 2.7 
NET122 765 [1,43] 1.0 41 4 3 1 33.3 
    40 6 5 1 20.0 
    23 166 165 1 0.6 
    22 184 182 2 1.1 
    21 200 199 1 0.5 
    17 277 276 1 0.4 
    16 299 297 2 0.7 
    15 320 319 1 0.3 
    11 410 408 2 0.5 
    10 432 431 1 0.2 
NET402 1080 [1,58] 16.0 47 37 36 1 2.7 
    46 42 41 1 2.4 
    38 113 112 1 0.9 
    33 175 173 2 1.1 
    32 190 186 4 2.1 
    31 202 200 3 1.0 
    22 350 349 1 0.3 
    21 373 371 2 0.5 
    20 396 393 3 0.8 
    19 417 416 1 0.2 

Table 2.   Summarized Test Results for the Five Test Networks.  f * is the uninterdicted 
value for maximum flow.  “NA” indicates “not applicable,” used because 
MXFI(R) solves exactly for all values of R for NET27. 
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u  k f* R Run Time 
(cpu sec.) 

Problematic 
R -Values z(λ,R) z(λ,R) Abs. 

Gap 
Rel. 
Gap 

16[1,2] 912 [1,43] 1.5 19 400 384 16 4.2 
    18 432 400 32 8.0 
    17 464 416 48 11.5 
    16 496 432 64 14.8 
    15 528 448 80 17.8 
    14 544 464 80 17.2 
    13 560 496 64 12.9 
    12 576 528 48 9.9 
    11 592 560 32 5.7 
    10 608 592 16 2.7 

8[1,4] 672 [1,43] 1.5 28 128 120 8 6.7 
    27 136 128 8 6.3 
    18 280 272 8 2.9 
    17 304 288 16 5.5 
    16 328 304 24 7.9 
    15 344 320 24 7.5 
    14 360 336 24 7.1 
    13 376 352 24 6.8 
    12 392 368 24 6.5 
    11 408 384 24 6.3 
    10 424 408 16 3.9 
    9 440 432 8 1.8 

4[1,8] 584 [1,43] 1.5 21 172 168 4 2.4 
    14 284 280 4 1.4 
    13 300 296 4 1.4 
    12 316 312 4 1.3 
    11 332 328 4 1.2 
    10 348 344 4 1.2 
    9 364 360 4 1.1 
    3 496 492 4 0.8 

Table 3.   Partial Test Results for NET122 with Restricted Arc Capacities.  16[1,2] 
indicates capacities uniformly distributed from the set {16,32}, 8[1,4] from the 
set {8,16,24,32} and 4[1,8] from the set {4,8,…,32}. 
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uk f* R Run Time 
(cpu sec.) 

Problematic 
R-Values z(λ,R) z(λ,R) Abs. 

Gap 
Rel. 
Gap 

2[1,16] 530 [1,43] 1.5 21 144 142 2 1.4 
    20 156 154 2 1.3 
    16 212 210 2 1.0 
    15 226 224 2 0.9 
    14 240 238 2 0.8 
    11 288 286 2 0.7 

[1,32] 503 [1,43] 1.5 22 121 120 1 0.8 
    21 133 132 1 0.8 
    16 199 197 1 1.0 
    15 213 211 2 0.9 
    14 226 225 1 0.4 
    13 240 239 1 0.4 
    12 254 253 1 0.4 
    11 268 267 1 0.4 

Table 4.   Partial Test Results for NET122 with Restricted Arc Capacities.  2[1,16] 
indicates capacities uniformly distributed from the set {2,4,…,32} and [1,32] 
from the set {1,2,…,32}. 
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V. CONCLUSIONS AND FUTURE WORK 

A.      SUMMARY 

This thesis has studied a special solution technique for solving or approximately 

solving the maximum-flow network-interdiction problem (MXFI).  In MXFI, a network 

user attempts to maximize flow of a commodity through the network, while an interdictor 

destroys network arcs, using limited interdiction resources, to minimize this maximum 

flow. 

MXFI can be modeled as a binary integer problem and solved but this approach 

can be slow.  A Lagrangian-relaxation technique developed by Derbes (1997) has shown 

promise for solving the problem more quickly, and this thesis has extended Derbes’ 

technique for solving MXFI for all values of R in a specified range.  It is assumed that 

one unit of resource is required to interdict any interdictable arc, so we are concerned 

only with integer values of R. 

 In effect, our basic algorithm, Algorithm 1, determines the breakpoints in the 

piecewise-linear, concave Lagrangian function, which can only occur when the 

Lagrangian multiplier λ equals the capacity of some arc.  For each linear piece of the 

function, MXFI is solved exactly for some value of R, with increasing values of λ 

corresponding to smaller values of R.  But the algorithm may leave gaps in the sequence 

of R-values for which the problem is solved.  Algorithm 2 combines Algorithm 1 and a 

heuristic to fill in these gaps, usually quite successfully. 

We have performed basic testing of Algorithm 2, coded in C, using five test 

networks ranging in size from 27 nodes and 86 arcs to 402 nodes and 1826 arcs.  Arc 

capacities are uniformly distributed random integers in the range [1,49].  All tests are 

performed on a 700 MHz Pentium III personal computer with The Microsoft Windows 

Millennium operating system and Microsoft Visual C++ compiler.  The largest network 

is solved in 16 seconds.  Absolute optimality gaps are always small, at most two percent 

of the uninterdicted maximum flow.  Relative gaps are typically small, a few percent, but 

can be large if the post-interdiction maximum flow is small. 
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Additional testing evaluated one of the networks with capacities distributed more 

and less coarsely.  In particular, capacities are drawn randomly from {16,32}, 

{8,16,24,32},…,{1,…,32}.  We conclude that absolute and relative optimality gaps tend 

to be larger with the coarser capacity distributions.  

 

B.      FUTURE WORK 

Substantial efficiency is gained in our solution procedure by solving the 

maximum-flow problem in iteration h+1 starting with the solution from iteration h; flow-

augmenting-path maximum-flow algorithms work well in this context.  However, there 

exist more efficient flow-augmenting-path algorithms than ours, and it might be worth 

investigating such algorithms for the purpose of improving overall run times. 

 Further research on this problem may focus on the solution methods of 

problematic R-values.  We have devised a heuristic to deal with these, but an exact 

branch-and-bound algorithm could exploit the lower bounds provided by our Lagrangian 

algorithm.  We also know that our lower bounds are not always maximal, and this issue 

needs to be investigated further:  Improved bounds could be obtained by simply defining 

a finer grid for λ than the one we use (which corresponds to arc capacities), but of course 

this would add to the computational burden.  The finer grid might also lead to better 

feasible solutions, too.  It may also be possible to reformulate the problem so that 

Lagrangian relaxation yields smaller optimality gaps.  Of course, the technique should be 

generalized so that the resource required to interdict an arc, rk, is a general integer rather 

than restricting rk = 1.    

The model MXFI can be extended to dynamic networks by adding traversal time 

for each arc in the networks.  The model can also be extended to consider stochastic arc 

capacities and/or uncertain interdiction successes (Cormican, Morton and Wood 1995). 

Perhaps our Lagrangian technique could be used in the solution procedure for these 

problems. 

 Golden (1978), Israeli (1999), Israeli and Wood (1999) and Wevley (1999) study 

another category of network interdiction model where an interdictor attempts to interdict 

(destroy or lengthen) arcs, using limited interdiction assets, to maximize the length of a 
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shortest s-t path.  While these models are similar to MXFI, that earlier work is not 

relevant to this thesis.  However, the Lagrangian-relaxation technique developed here 

may have an analog for shortest-path interdiction and this may be worth investigating. 
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